Industry 5.0 aims at maximizing the collaboration between humans and machines. Machines are capable of automating repetitive jobs, while humans handle creative tasks. As a critical component of Industrial Internet of Things (IIoT) systems for service delivery, network data stream analytics often encounter concept drift issues due to dynamic IIoT environments, causing performance degradation and automation difficulties. In this paper, we propose a novel Multi-Stage Automated Network Analytics (MSANA) framework for concept drift adaptation in IIoT systems, consisting of dynamic data pre-processing, the proposed Drift-based Dynamic Feature Selection (DD-FS) method, dynamic model learning & selection, and the proposed Window-based Performance Weighted Probability Averaging Ensemble (W-PWPAE) model. It is a complete automated data stream analytics framework that enables automatic, effective, and efficient data analytics for IIoT systems in Industry 5.0. Experimental results on two public IoT datasets demonstrate that the proposed framework outperforms state-of-the-art methods for IIoT data stream analytics.
翻译:工业5.0 工业5.0 目的是尽量扩大人与机器之间的合作。机器能够使重复性工作自动化,而人类则从事创造性的任务。作为用于提供服务的工业性物互联网(IIOT)系统的关键组成部分,网络数据流分析器经常遇到动态IIOT环境造成的概念漂移问题,造成性能退化和自动化困难。在本文件中,我们提议了一个全新的多系统自动化网络分析器(MSANA)框架,用于IIOT系统的概念漂移适应,其中包括动态数据预处理、拟议的以DD-FS为基础的开发性动态特征选择方法、动态模型学习和选择,以及拟议的基于窗口的基于性能的有分量性(W-PWPAE)模型。这是一个完整的自动化数据流分析框架,使工业中的IIOT系统自动、有效、高效的数据分析器能5.0。两个公开的IOT数据集的实验结果显示,拟议的框架超出了IIT数据流的状态和艺术方法。