Using the calculus of variations, we prove the following structure theorem for noise stable partitions: a partition of $n$-dimensional Euclidean space into $m$ disjoint sets of fixed Gaussian volumes that maximize their noise stability must be $(m-1)$-dimensional, if $m-1\leq n$. In particular, the maximum noise stability of a partition of $m$ sets in $\mathbb{R}^{n}$ of fixed Gaussian volumes is constant for all $n$ satisfying $n\geq m-1$. From this result, we obtain: (i) A proof of the Plurality is Stablest Conjecture for $3$ candidate elections, for all correlation parameters $\rho$ satisfying $0<\rho<\rho_{0}$, where $\rho_{0}>0$ is a fixed constant (that does not depend on the dimension $n$), when each candidate has an equal chance of winning. (ii) A variational proof of Borell's Inequality (corresponding to the case $m=2$). The structure theorem answers a question of De-Mossel-Neeman and of Ghazi-Kamath-Raghavendra. Item (i) is the first proof of any case of the Plurality is Stablest Conjecture of Khot-Kindler-Mossel-O'Donnell (2005) for fixed $\rho$, with the case $\rho\to1^{-}$ being solved recently. Item (i) is also the first evidence for the optimality of the Frieze-Jerrum semidefinite program for solving MAX-3-CUT, assuming the Unique Games Conjecture. Without the assumption that each candidate has an equal chance of winning in (i), the Plurality is Stablest Conjecture is known to be false.
翻译:使用变异的计算器, 我们证明以下结构理论是用于噪音稳定分区的: 将美元维度的尤克利德纳空间分割成 美元维度的固定高斯音量断合合数组。 如果 $m-1\leq n$, 则其噪声稳定性最大化必须是 $(m-1)$(m-1leq n$) 。 特别是, 固定高斯音量的 $( $\ mathb{R ⁇ } $) 分配最大噪声稳定性对于所有符合噪音稳定的平价的美元来说是恒定数 。 从此结果中, 我们获得:(i) 以美元维度为基质的平价空间空间空间分割成以美元为单位 。 当每个候选人拥有同等的赢取机会时, 最优的波瑞尔平价证明( corresporate) 也代表货币正数的硬度 。 (corminate- colorate) 也代表硬度的硬度- 硬度为硬度的硬度 硬度 。