We show that the derivative of the (measure) transfer operator with respect to the parameter of the map is a divergence. Then, for physical measures of discrete-time hyperbolic chaotic systems, we derive an equivariant divergence formula for the unstable perturbation of transfer operators along unstable manifolds. This formula and hence the linear response, the parameter-derivative of physical measures, can be sampled by recursively computing only $2u$ many vectors on one orbit, where $u$ is the unstable dimension. The numerical implementation of this formula in \cite{far} is neither cursed by dimensionality nor the sensitive dependence on initial conditions.
翻译:我们展示了在混沌系统中稳定传输算子的导数是发散的。然后,对于离散时间下的超混沌系统实测度,我们得到了一个在不稳定流形上的不稳定扰动的等变发散公式。这个公式以及物理测量(线性响应),即实测度对参数的导数,只需要递归计算一个轨道上的$2u$ 个向量即可进行采样,其中$u$是不稳定维度。在\cite{far}中,这个公式的数值实现既没有因为维数而受到诅咒,也没有因为初始条件的敏感性而受到诅咒。