We consider the problem of iterative machine teaching, where a teacher sequentially provides examples based on the status of a learner under a discrete input space (i.e., a pool of finite samples), which greatly limits the teacher's capability. To address this issue, we study iterative teaching under a continuous input space where the input example (i.e., image) can be either generated by solving an optimization problem or drawn directly from a continuous distribution. Specifically, we propose data hallucination teaching (DHT) where the teacher can generate input data intelligently based on labels, the learner's status and the target concept. We study a number of challenging teaching setups (e.g., linear/neural learners in omniscient and black-box settings). Extensive empirical results verify the effectiveness of DHT.
翻译:我们考虑迭代机器教学的问题,其中老师可以根据离散输入空间(即有限样本池)下的学习者状态顺序地提供样本,该限制非常严格。为了解决这个问题,我们研究了在连续输入空间下的迭代教学,其中输入示例(即图像)可以通过解决优化问题或直接从连续分布中绘制。具体而言,我们提出了基于数据的幻觉教学(DHT),其中老师可以智能地生成输入数据,基于标签、学习者的状态和目标概念。我们研究了一些具有挑战性的教学设置(例如,在全知和黑盒设置中的线性/神经学习者)。广泛的实证结果验证了 DHT 的有效性。