Dance choreography for a piece of music is a challenging task, having to be creative in presenting distinctive stylistic dance elements while taking into account the musical theme and rhythm. It has been tackled by different approaches such as similarity retrieval, sequence-to-sequence modeling and generative adversarial networks, but their generated dance sequences are often short of motion realism, diversity and music consistency. In this paper, we propose a Music-to-Dance with Optimal Transport Network (MDOT-Net) for learning to generate 3D dance choreographs from music. We introduce an optimal transport distance for evaluating the authenticity of the generated dance distribution and a Gromov-Wasserstein distance to measure the correspondence between the dance distribution and the input music. This gives a well defined and non-divergent training objective that mitigates the limitation of standard GAN training which is frequently plagued with instability and divergent generator loss issues. Extensive experiments demonstrate that our MDOT-Net can synthesize realistic and diverse dances which achieve an organic unity with the input music, reflecting the shared intentionality and matching the rhythmic articulation.


翻译:一部音乐的舞蹈舞蹈舞蹈舞蹈舞蹈编程是一项具有挑战性的任务,在展示独特的立体舞蹈元素时必须具有创造性,同时考虑到音乐主题和节奏。它通过类似性检索、顺序到顺序的建模和基因对抗网络等不同方法得到了解决,但是它们制作的舞蹈序列往往缺少运动现实主义、多样性和音乐一致性。在本文中,我们提议与最佳交通网络(MDOT-Net)一起学习如何从音乐中产生3D舞蹈舞蹈舞蹈编舞。我们引入了一种最佳的交通距离,以评价所制作的舞蹈分布的真实性,以及格罗莫夫-瓦瑟斯坦距离,以测量舞蹈分布和投入音乐之间的对应关系。这提供了一种定义明确且非多样化的培训目标,从而减轻了标准的GAN培训的限制,这种培训经常受到不稳定和不同发电机损失问题的困扰。广泛的实验表明,我们的MDOT-Net可以将现实和多样化的舞蹈与投入音乐结合起来,反映共同的有意性和节奏。

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员