We study the problem of extracting accurate correspondences for point cloud registration. Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult in low-overlap scenarios, showing great potential in registration. They seek correspondences over downsampled superpoints, which are then propagated to dense points. Superpoints are matched based on whether their neighboring patches overlap. Such sparse and loose matching requires contextual features capturing the geometric structure of the point clouds. We propose Geometric Transformer to learn geometric feature for robust superpoint matching. It encodes pair-wise distances and triplet-wise angles, making it robust in low-overlap cases and invariant to rigid transformation. The simplistic design attains surprisingly high matching accuracy such that no RANSAC is required in the estimation of alignment transformation, leading to $100$ times acceleration. Our method improves the inlier ratio by 17\%$\sim$30\% and the registration recall by over 7\% on the challenging 3DLoMatch benchmark. The code and models will be released at \url{https://github.com/qinzheng93/GeoTransformer}.
翻译:我们研究为点云登记提取准确对应文件的问题。 最近的关键点无方法绕过探测在低重叠情况下困难的重复式关键点, 显示在注册方面的巨大潜力。 它们寻求通过下标超级点进行通信, 然后将其传播到稠密点。 超级点根据其相邻的补补点是否重叠而匹配。 这种分散和松散的匹配要求用上点云的几何结构来捕捉点云的几何结构。 我们建议几何变异器学习强力超点匹配的几何特征。 它会用对称距离和三重角度来编码, 使其在低重叠情况下变得强大, 并且不易变硬化。 简单化的设计达到惊人的匹配精度, 在估计校准变形时不需要RANSAC, 导致100美元的加速率。 我们的方法将离差率提高17 $\ min 30 和 + + + 7 ⁇, 在具有挑战性的 3DLOMT 基准上, 代码和模型将发布在\ url{https://github.com/q正eng93/ granchemaxeusion。