Diagnostic accuracy studies assess sensitivity and specificity of a new index test in relation to an established comparator or the reference standard. The development and selection of the index test is usually assumed to be conducted prior to the accuracy study. In practice, this is often violated, for instance if the choice of the (apparently) best biomarker, model or cutpoint is based on the same data that is used later for validation purposes. In this work, we investigate several multiple comparison procedures which provide family-wise error rate control for the emerging multiple testing problem. Due to the nature of the co-primary hypothesis problem, conventional approaches for multiplicity adjustment are too conservative for the specific problem and thus need to be adapted. In an extensive simulation study, five multiple comparison procedures are compared with regards to statistical error rates in least-favorable and realistic scenarios. This covers parametric and nonparamtric methods and one Bayesian approach. All methods have been implemented in the new open-source R package DTAmc which allows to reproduce all simulation results. Based on our numerical results, we conclude that the parametric approaches (maxT, Bonferroni) are easy to apply but can have inflated type I error rates for small sample sizes. The two investigated Bootstrap procedures, in particular the so-called pairs Bootstrap, allow for a family-wise error rate control in finite samples and in addition have a competitive statistical power.


翻译:诊断性准确性研究评估与既定参照国或参考标准相比,新的指数测试的敏感性和特殊性。通常假定在精确性研究之前就进行指数测试的开发和选择。在实践中,这经常被违反,例如,如果选择(显然)最佳生物标记、模型或切分所依据的数据与后来用于验证目的的相同,那么选择最佳生物标记、模型或切分的依据与(明显)最佳生物标记、模型或切分所依据的数据相同。在这项工作中,我们调查了若干多个比较程序,这些程序为新出现的多重测试问题提供了家庭错误率控制。由于共同主要假设问题的性质,常规的多重调整方法对于具体问题过于保守,因此需要加以调整。在一项广泛的模拟研究中,五个多重比较程序与统计错误率进行比较,这包括参数和非参数方法,以及一种巴耶斯方法。所有方法都已在新的开放源R软件包DTTAMc中实施,可以复制所有模拟结果。根据我们的数字结果,我们的结论是,对于特定问题而言,对多重调整的常规方法(Max、Bonferroni)过于保守,因此需要加以调整。在广泛模拟研究中,对统计样本样本中的比重率程序适用了两种标准,但可以允许对I号的弹性测定序的比。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】数据科学家统计实战,附代码与409页pdf
专知会员服务
59+阅读 · 2020年11月6日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员