The well-known statistic PageRank was created in 1998 by co-founders of Google, Sergey Brin and Larry Page, to optimize the ranking of websites for their search engine outcomes. It is computed using an iterative algorithm, based on the idea that nodes with a larger number of incoming edges are more important. Google's PageRank involves some information from "aliens"; the 15% of information is regarded as the connections from the outside of the network system under consideration. Without involving the information from "aliens", Google's PageRank could not be well-defined. In this paper, seeking a stable statistic which is "close" to an "intrinsic" version of PageRank, we will introduce a new statistic called MarkovRank. A special attention will be paid to the comparison of rank statistics among standard-PageRank,"intrinsic-PageRank" and MarkovRank, and our conclusion is that the rank statistic of MarkovRank, which is always well-defined, is identical to that of "intrinsic-PageRank", as far as the latter is well-defined.


翻译:众所周知的 PageRank 统计数据是谷歌、 Sergey Brin 和 Larry Page 的共同创始人于1998年创建的,目的是优化网站的排名,以取得搜索引擎的结果。它使用迭代算法计算,其依据的理念是,具有更多进场边缘的节点更为重要。谷歌的 PageRank 包含来自“ aliens” 的一些信息; 15%的信息被视为来自所考虑的网络系统外部的连接。 谷歌的 PageRank 不包含来自“ aliens ” 的信息, Google的 PageRank 无法很好地定义。 在本文中, 寻找稳定的数据“ 关闭 ” 至 Page Rank 的“ intrinsic” 版本。 我们将引入名为 MarkovRank 的新统计。 将特别关注标准- Page Rank ” 、 “ intrinsc- Page- Page- Rank ” 和 MarkovRank 之间等级统计的比较。 我们的结论是, 马科夫兰克的等级统计始终定义明确, 与“ ” 定义非常一致。

0
下载
关闭预览

相关内容

PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由[1] 根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。Google的创始人拉里·佩奇和谢尔盖·布林于1998年在斯坦福大学发明了这项技术。
专知会员服务
123+阅读 · 2020年9月8日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
65+阅读 · 2021年6月18日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员