This article investigates the origin of numerical issues in maximum likelihood parameter estimation for Gaussian process (GP) interpolation and investigates simple but effective strategies for improving commonly used open-source software implementations. This work targets a basic problem but a host of studies, particularly in the literature of Bayesian optimization, rely on off-the-shelf GP implementations. For the conclusions of these studies to be reliable and reproducible, robust GP implementations are critical.
翻译:本条调查了高山进程内插最大可能性参数估计数字问题的根源,并调查了改进常用开放源代码软件执行的简单而有效的战略。这项工作针对一个基本问题,但许多研究,特别是巴耶斯优化文献中的研究,依靠现成的GP实施。为了使这些研究的结论可靠和可复制,强有力的GP实施至关重要。