A graph is $O_k$-free if it does not contain $k$ pairwise vertex-disjoint and non-adjacent cycles. We show that Maximum Independent Set and 3-Coloring in $O_k$-free graphs can be solved in quasi-polynomial time. As a main technical result, we establish that "sparse" (here, not containing large complete bipartite graphs as subgraphs) $O_k$-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is proven sharp as there is an infinite family of $O_2$-free graphs without $K_{3,3}$-subgraph and whose treewidth is (at least) logarithmic. Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse $O_k$-free graphs, and that deciding the $O_k$-freeness of sparse graphs is polynomial time solvable.
翻译:一个图是$O_k$-free的,当且仅当它不包含$k$条两两顶点不相交且不相邻的环。我们展示了$O_k$-free图中最大独立集和三着色问题可以被准多项式时间内解决。作为主要技术结果,我们证明了"稀疏"($O_k$-free图中不包含大的完全二分图子图)的图的树宽度(偶数,反馈顶点集数)至多是顶点数的对数。这是尖锐的,因为有一个无限族$O_2$-free图没有$K_{3,3}$-子图且其树宽度至少是对数的。其他后果包括可以在稀疏$O_k$-free图中多数NP完全问题(如最大独立集、最小顶点覆盖、最小支配集、最小着色)在多项式时间内被解决,以及决定稀疏图的$O_k$-freeness是可以在多项式时间内被解决的。