This work proposes a novel risk-perception-aware (RPA) control design using non-rational perception of risks associated with uncertain dynamic spatial costs. We use Cumulative Prospect Theory (CPT) to model the risk perception of a decision maker (DM) and use it to construct perceived risk functions that transform the uncertain dynamic spatial cost to deterministic perceived risks of a DM. These risks are then used to build safety sets which can represent risk-averse to risk-insensitive perception. We define a notions of "inclusiveness" and "versatility" based on safety sets and use it to compare with other models such as Conditional value at Risk (CVaR) and Expected risk (ER). We theoretically prove that CPT is the most "inclusive" and "versatile" model of the lot in the context of risk-perception-aware controls. We further use the perceived risk function along with ideas from control barrier functions (CBF) to construct a class of perceived risk CBFs. For a class of truncated-Gaussian costs, we find sufficient geometric conditions for the validity of this class of CBFs, thus guaranteeing safety. Then, we generate perceived-safety-critical controls using a Quadratic program (QP) to guide an agent safely according to a given perceived risk model. We present simulations in a 2D environment to illustrate the performance of the proposed controller.
翻译:这项工作提出一种新的风险感知(RPA)控制设计,使用与不确定动态空间成本相关风险的不合理认识来进行风险感知(RPA)控制设计。我们使用累积前景理论(CPT)来模拟决策者(DM)的风险感知(风险感知(风险感知(风险感知(风险感知))),并用它来构建感知风险感(风险感知)风险(风险感知(风险感知))风险(风险感知)风险(CVAR)和预期风险(ER)等其他模型。我们从理论上证明CPT是最“包容性”和“风险感知(风险感知)”风险(风险感知(DMD) ) 风险感知(风险感知) 风险感知(风险感知(风险感知) 风险(CBFF) 和“反风险(风险感知(CBFFS) ) 概念(风险) 概念。对于风险(风险- 风险- 风险- GAS) 和预期风险(风险(CVAR) 和预期风险(风险) 风险(ED) 模型(我们找到足够的安全性) 安全性环境控制(安全性) 模型(安全性) 模型) 模型(安全性(安全性) 模型(风险) 模型) 模型(风险) 模型) 的正确性) 模型(风险) 模型(安全性) 模型(风险) 模型(风险) 模型(我们发现(安全性环境) 的定位) 来构建(风险) 的定位) 的定位(风险) 来构建一个风险(安全性(风险) 。