Measurements are generally collected as unilateral or bilateral data in clinical trials or observational studies. For example, in ophthalmology studies, the primary outcome is often obtained from one eye or both eyes of an individual. In medical studies, the relative risk is usually the parameter of interest and is commonly used. In this article, we develop three confidence intervals for the relative risk for combined unilateral and bilateral correlated data under the equal dependence assumption. The proposed confidence intervals are based on maximum likelihood estimates of parameters derived using the Fisher scoring method. Simulation studies are conducted to evaluate the performance of proposed confidence intervals with respect to the empirical coverage probability, the mean interval width, and the ratio of mesial non-coverage probability to the distal non-coverage probability. We also compare the proposed methods with the confidence interval based on the method of variance estimates recovery and the confidence interval obtained from the modified Poisson regression model with correlated binary data. We recommend the score confidence interval for general applications because it best controls converge probabilities at the 95% level with reasonable mean interval width. We illustrate the methods with a real-world example.


翻译:在临床试验或观察研究中,测量一般作为单边或双边数据收集,在临床试验或观察研究中作为单边或双边数据收集,例如眼科研究中,主要结果往往取自个人的一只眼睛或双眼。在医学研究中,相对风险通常是感兴趣的参数,并且经常使用。在本条中,我们为在同等依赖性假设下合并单边和双边相关数据的相对风险制定了三个信任间隔。拟议的信任间隔以利用Fisher评分方法得出参数的最大可能性估计为基础。进行了模拟研究,以评价在经验覆盖概率、平均间隔宽度和中间非覆盖概率与隐蔽非覆盖概率之比方面拟议信任间隔间隔的绩效。我们还根据差异估计法的恢复方法和从修改后的Poisson回归模型中获得的信任间隔与相关的二元数据,将拟议方法与信任间隔进行比较。我们建议一般应用的评分间隔,因为最佳控制将概率与合理的平均间隔宽度相匹配。我们用现实世界的例子来说明方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员