Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
翻译:变式推论使用优化,而不是整合,以近似贝叶斯模型中的边际可能性,从而也使用后方。 由于过去十年在计算可缩放性方面取得的进步,变式推论现在成为许多高维模型和大型数据集的首选选择。 这份教益从参数角度引入了差异推论,主导了这些最近的动态,而其他引言文本通常采用中位角度。