With the growing popularity of intelligent assistants (IAs), evaluating IA quality becomes an increasingly active field of research. This paper identifies and quantifies the feedback effect, a novel component in IA-user interactions: how the capabilities and limitations of the IA influence user behavior over time. First, we demonstrate that unhelpful responses from the IA cause users to delay or reduce subsequent interactions in the short term via an observational study. Next, we expand the time horizon to examine behavior changes and show that as users discover the limitations of the IA's understanding and functional capabilities, they learn to adjust the scope and wording of their requests to increase the likelihood of receiving a helpful response from the IA. Our findings highlight the impact of the feedback effect at both the micro and meso levels. We further discuss its macro-level consequences: unsatisfactory interactions continuously reduce the likelihood and diversity of future user engagements in a feedback loop.
翻译:随着智能助手的日益普及,评估智能助手的质量成为越来越活跃的研究领域。本文确定和量化了反馈效应,即智能助手-用户交互中的一种新型组成部分:智能助手的能力和限制如何随着时间的推移影响用户的行为。首先,通过观察研究,我们证明了智能助手给出的无用响应会导致用户在短期内延迟或减少后续交互。接下来,我们扩展时间范围以研究行为变化,并表明随着用户发现智能助手的理解和功能能力的限制,他们学会调整请求的范围和措辞,以增加从智能助手获得有用响应的可能性。我们的研究结果强调了反馈效应在微观和中观层面上的重要性。此外,我们进一步讨论了其宏观层面的后果:令人不满意的交互在反馈循环中不断降低了未来用户参与的可能性和多样性。