The use of artificial intelligence in the agricultural sector has been growing at a rapid rate to automate farming activities. Emergent farming technologies focus on mapping and classification of plants, fruits, diseases, and soil types. Although, assisted harvesting and pruning applications using deep learning algorithms are in the early development stages, there is a demand for solutions to automate such processes. This paper proposes the use of Deep Learning for the classification of trusses and runners of strawberry plants using semantic segmentation and dataset augmentation. The proposed approach is based on the use of noises (i.e. Gaussian, Speckle, Poisson and Salt-and-Pepper) to artificially augment the dataset and compensate the low number of data samples and increase the overall classification performance. The results are evaluated using mean average of precision, recall and F1 score. The proposed approach achieved 91\%, 95\% and 92\% on precision, recall and F1 score, respectively, for truss detection using the ResNet101 with dataset augmentation utilising Salt-and-Pepper noise; and 83\%, 53\% and 65\% on precision, recall and F1 score, respectively, for truss detection using the ResNet50 with dataset augmentation utilising Poisson noise.
翻译:农业部门人工智能的使用迅速增长,使农业活动自动化; 新兴农业技术侧重于植物、水果、疾病和土壤种类的测绘和分类; 虽然利用深学习算法协助采伐和理剪应用仍处于早期开发阶段,但需要为此类过程自动化找到解决办法; 本文提议利用深学习对草莓植物的藤条和茎子进行分类,使用语义分割和增强数据元件; 提议的方法以噪音(即高山、斯佩克勒、普瓦松和盐和硫酸盐)为基础,人为地扩大数据集,补偿低数据样本的数量,提高总体分类性能; 采用平均精确度、回顾和F1分来评估结果; 拟议的方法在精确度、回溯和F1分方面分别实现了91 ⁇ 、95 ⁇ 和92 ⁇ ; 采用ResNet101和数据扩增盐和硫酸噪; 以及 83 ⁇ 、53 ⁇ 和65 ⁇,分别使用精确度、精确度、精确度、精确度、精确度、精确度、精确度、精确度、精确度1和精确度数据。