Math word problems (MWPs) is a task that automatically derives solution expression from a giving math problems in text. The previous studies suffer from spurious correlations between input text and output expression. To mitigate this issue, we propose a self-consistent reasoning framework called SCR, which attempts to adopt a pruning strategy to correct the output distribution shift so as to implicitly fix those spurious correlative samples. Specifically, we firstly obtain a sub-network by pruning a roberta2tree model, for the sake to use the gap on output distribution between the original roberta2tree model and the pruned sub-network to expose spurious correlative samples. Then, we calibrate the output distribution shift by applying symmetric Kullback-Leibler divergence to alleviate spurious correlations. In addition, SCR generates equivalent expressions, thereby, capturing the original text's logic rather than relying on hints from original text. Extensive experiments on two large-scale benchmarks demonstrate that our model substantially outperforms the strong baseline methods.


翻译:数学字问题( MWPs) 是一个任务, 它自动从给定文本数学问题中产生解析表达式。 先前的研究在输入文本和输出表达式之间有虚假的关联性。 为了减轻这个问题, 我们提议了一个自相矛盾的逻辑框架, 称为 SCR, 试图采取调整策略来纠正输出分布变化, 以便暗中修正这些虚假相关样本。 具体地说, 我们首先通过剪裁一个 roberta2tree 模型获得一个子网络, 以便利用原始的roberta2tree 模型和纯化的子网络在输出分布上的差距来暴露虚假的对应性样本。 然后, 我们通过应用对称 Kullback- Leiber 的偏差来校准输出分布变化, 来减轻虚假的关联性。 此外, SCRBR 生成等式表达方式, 从而获取原始文本的逻辑, 而不是依赖原始文本的提示。 在两个大型基准上进行广泛的实验, 表明我们的模型大大超出强势基线方法 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月12日
Probabilistically Robust PAC Learning
Arxiv
0+阅读 · 2022年12月9日
Arxiv
0+阅读 · 2022年12月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员