Math word problems (MWPs) is a task that automatically derives solution expression from a giving math problems in text. The previous studies suffer from spurious correlations between input text and output expression. To mitigate this issue, we propose a self-consistent reasoning framework called SCR, which attempts to adopt a pruning strategy to correct the output distribution shift so as to implicitly fix those spurious correlative samples. Specifically, we firstly obtain a sub-network by pruning a roberta2tree model, for the sake to use the gap on output distribution between the original roberta2tree model and the pruned sub-network to expose spurious correlative samples. Then, we calibrate the output distribution shift by applying symmetric Kullback-Leibler divergence to alleviate spurious correlations. In addition, SCR generates equivalent expressions, thereby, capturing the original text's logic rather than relying on hints from original text. Extensive experiments on two large-scale benchmarks demonstrate that our model substantially outperforms the strong baseline methods.
翻译:数学字问题( MWPs) 是一个任务, 它自动从给定文本数学问题中产生解析表达式。 先前的研究在输入文本和输出表达式之间有虚假的关联性。 为了减轻这个问题, 我们提议了一个自相矛盾的逻辑框架, 称为 SCR, 试图采取调整策略来纠正输出分布变化, 以便暗中修正这些虚假相关样本。 具体地说, 我们首先通过剪裁一个 roberta2tree 模型获得一个子网络, 以便利用原始的roberta2tree 模型和纯化的子网络在输出分布上的差距来暴露虚假的对应性样本。 然后, 我们通过应用对称 Kullback- Leiber 的偏差来校准输出分布变化, 来减轻虚假的关联性。 此外, SCRBR 生成等式表达方式, 从而获取原始文本的逻辑, 而不是依赖原始文本的提示。 在两个大型基准上进行广泛的实验, 表明我们的模型大大超出强势基线方法 。