Let $\{\eta_{j}\}_{j = 0}^{N}$ be a sequence of independent and identically distributed complex normal random variables with mean zero and variances $\{\sigma_{j}^{2}\}_{j = 0}^{N}$. Let $\{f_{j} (z)\}_{j = 0}^{N}$ be a sequence of holomorphic functions that are real-valued on the real line. The purpose of the present study is that of examining the number of times that the random sum $\sum_{j = 0}^{N} \eta_{j} f_{j} (z)$ crosses the complex level $\boldsymbol{K} = K_{1} + i K_{2}$, where $K_{1}$ and $K_{2}$ are constants independent of $z$. More specifically, we establish an exact formula for the expected density function for the complex zeros. We then reformulate the problem in terms of successive observations of a Brownian motion. We further answer the basic question about the expected number of complex zeros for coefficients of nonvanishing mean values.
翻译:让 $ eta j j j j j = 0 {N} 是一个独立且同样分布的正常随机变量序列, 平均为零, 差异值为 0 {N} 。 让我们 $ f {j} (z) j = 0 {N} 是一个全息函数序列, 实际价值在实际线上。 本研究的目的是审查随机金额 $\ sum j = 0 {N} f {eta} j} (z) 与复杂水平 $\ boldsymbol{K} = K {1} + i K ⁇ 2} 。 $ 1} + i K ⁇ 2} 美元, 其中, $1} 美元 和 $ K ⁇ 2} 是固定的 $z 。 。 更具体地说, 我们为复杂零的预期密度函数设定一个精确公式。 然后从连续观测布朗 动作的角度重新说明问题。 我们进一步回答关于非损耗损平均值系数的预期复杂零数数的基本问题。