In the "correlated sampling" problem, two players are given probability distributions $P$ and $Q$, respectively, over the same finite set, with access to shared randomness. Without any communication, the two players are each required to output an element sampled according to their respective distributions, while trying to minimize the probability that their outputs disagree. A well known strategy due to Kleinberg-Tardos and Holenstein, with a close variant (for a similar problem) due to Broder, solves this task with disagreement probability at most $2 \delta/(1+\delta)$, where $\delta$ is the total variation distance between $P$ and $Q$. This strategy has been used in several different contexts, including sketching algorithms, approximation algorithms based on rounding linear programming relaxations, the study of parallel repetition and cryptography. In this paper, we give a surprisingly simple proof that this strategy is essentially optimal. Specifically, for every $\delta \in (0,1)$, we show that any correlated sampling strategy incurs a disagreement probability of essentially $2\delta/(1+\delta)$ on some inputs $P$ and $Q$ with total variation distance at most $\delta$. This partially answers a recent question of Rivest. Our proof is based on studying a new problem that we call "constrained agreement". Here, the two players are given subsets $A \subseteq [n]$ and $B \subseteq [n]$, respectively, and their goal is to output an element $i \in A$ and $j \in B$, respectively, while minimizing the probability that $i \neq j$. We prove tight bounds for this question, which in turn imply tight bounds for correlated sampling. Though we settle basic questions about the two problems, our formulation leads to more fine-grained questions that remain open.


翻译:在“ 与气候相关的抽样” 问题中, 向两个玩家分别提供相同限值的概率分布 $P 和 $Q, 并共享随机性。 在没有任何沟通的情况下, 两个玩家都需要根据各自的分布量来输出一个元素样本, 同时尽量降低其产出不一致的概率。 克莱伯格- 塔尔多斯 和 霍伦斯坦 的一个众所周知的战略, 由布罗德 造成的一个近似变量( 类似问题 ) 解决了这一任务。 具体地说, 最多2 美元 delta / ( 1 ⁇ delta) 的概率, 美元是 美元 美元 和 美元 美元 之间的总差异。 这个策略在不同的场合中, 包括素描写算算算算算法, 近线性算算法, 研究平行的重复和加密。 在本文中, 我们的每张数 美元 的 基调, 大约 美元 美元, 美元 和 美元 美元 基调, 我们的 基调, 我们的 基调 基调 。

0
下载
关闭预览

相关内容

【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员