We present adaptive sequential SAA (sample average approximation) algorithms to solve large-scale two-stage stochastic linear programs. The iterative algorithm framework we propose is organized into \emph{outer} and \emph{inner} iterations as follows: during each outer iteration, a sample-path problem is implicitly generated using a sample of observations or ``scenarios," and solved only \emph{imprecisely}, to within a tolerance that is chosen \emph{adaptively}, by balancing the estimated statistical error against solution error. The solutions from prior iterations serve as \emph{warm starts} to aid efficient solution of the (piecewise linear convex) sample-path optimization problems generated on subsequent iterations. The generated scenarios can be independent and identically distributed (iid), or dependent, as in Monte Carlo generation using Latin-hypercube sampling, antithetic variates, or randomized quasi-Monte Carlo. We first characterize the almost-sure convergence (and convergence in mean) of the optimality gap and the distance of the generated stochastic iterates to the true solution set. We then characterize the corresponding iteration complexity and work complexity rates as a function of the sample size schedule, demonstrating that the best achievable work complexity rate is Monte Carlo canonical and analogous to the generic $\mathcal{O}(\epsilon^{-2})$ optimal complexity for non-smooth convex optimization. We report extensive numerical tests that indicate favorable performance, due primarily to the use of a sequential framework with an optimal sample size schedule, and the use of warm starts. The proposed algorithm can be stopped in finite-time to return a solution endowed with a probabilistic guarantee on quality.
翻译:我们提出适应性序列 SAA( 模擬平均近似) 算法, 以解决大规模两个阶段的相向线性程序。 我们提议的迭代算法框架组织成 emph{outer} 和\emph{inner} 迭代算法框架如下: 在每次外迭代中, 样本- 路径问题会通过观察或“ 假设” 样本或“ 假设” 的样本产生, 并且只解决了 emph{ impreticly}, 通过平衡估计的统计复杂性与解决方案错误之间的平衡。 之前的迭代算法框架的迭代代代算法框架是 : 在每次外迭代中, 样本- 路径问题会通过一个样本样本样本样本样本样本样本样本样本样本样本样本的样本样本样本, 只能以同样的方式产生( ), 并且只用拉丁- 节率抽样取样、 偏差、 或随机准准的准的准的 。 我们首先将预想( ) 的( 和平均) 预言) 预言- 预言的精度的精度的精度的精度和精度的精度的精度的精度的精度的精度的精度的精度的精度 测试 度 测试的精度的精度的精度的精度的精度的精度的精度的精度值的精度值的精度值的精度值的精度 度 度 度 度 度的精度比的精度的精度的精度的精度的精度和度的精度的精度的精度的精度的精度的精度的精度的精度的精度 。