We present adaptive sequential SAA (sample average approximation) algorithms to solve large-scale two-stage stochastic linear programs. The iterative algorithm framework we propose is organized into \emph{outer} and \emph{inner} iterations as follows: during each outer iteration, a sample-path problem is implicitly generated using a sample of observations or ``scenarios," and solved only \emph{imprecisely}, to within a tolerance that is chosen \emph{adaptively}, by balancing the estimated statistical error against solution error. The solutions from prior iterations serve as \emph{warm starts} to aid efficient solution of the (piecewise linear convex) sample-path optimization problems generated on subsequent iterations. The generated scenarios can be independent and identically distributed (iid), or dependent, as in Monte Carlo generation using Latin-hypercube sampling, antithetic variates, or randomized quasi-Monte Carlo. We first characterize the almost-sure convergence (and convergence in mean) of the optimality gap and the distance of the generated stochastic iterates to the true solution set. We then characterize the corresponding iteration complexity and work complexity rates as a function of the sample size schedule, demonstrating that the best achievable work complexity rate is Monte Carlo canonical and analogous to the generic $\mathcal{O}(\epsilon^{-2})$ optimal complexity for non-smooth convex optimization. We report extensive numerical tests that indicate favorable performance, due primarily to the use of a sequential framework with an optimal sample size schedule, and the use of warm starts. The proposed algorithm can be stopped in finite-time to return a solution endowed with a probabilistic guarantee on quality.


翻译:我们提出适应性序列 SAA( 模擬平均近似) 算法, 以解决大规模两个阶段的相向线性程序。 我们提议的迭代算法框架组织成 emph{outer} 和\emph{inner} 迭代算法框架如下: 在每次外迭代中, 样本- 路径问题会通过观察或“ 假设” 样本或“ 假设” 的样本产生, 并且只解决了 emph{ impreticly}, 通过平衡估计的统计复杂性与解决方案错误之间的平衡。 之前的迭代算法框架的迭代代代算法框架是 : 在每次外迭代中, 样本- 路径问题会通过一个样本样本样本样本样本样本样本样本样本样本样本样本的样本样本样本, 只能以同样的方式产生( ), 并且只用拉丁- 节率抽样取样、 偏差、 或随机准准的准的准的 。 我们首先将预想( ) 的( 和平均) 预言) 预言- 预言的精度的精度的精度的精度和精度的精度的精度的精度的精度的精度的精度的精度的精度 测试 度 测试的精度的精度的精度的精度的精度的精度的精度的精度值的精度值的精度值的精度值的精度 度 度 度 度 度的精度比的精度的精度的精度的精度的精度和度的精度的精度的精度的精度的精度的精度的精度的精度的精度 。

1
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【经典书】Python数据数据分析第二版,541页pdf
专知会员服务
195+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月8日
Arxiv
0+阅读 · 2021年2月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
【经典书】Python数据数据分析第二版,541页pdf
专知会员服务
195+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员