The popularity of Neural Radiance Fields (NeRFs) for view synthesis has led to a desire for NeRF editing tools. Here, we focus on inpainting regions in a view-consistent and controllable manner. In addition to the typical NeRF inputs and masks delineating the unwanted region in each view, we require only a single inpainted view of the scene, i.e., a reference view. We use monocular depth estimators to back-project the inpainted view to the correct 3D positions. Then, via a novel rendering technique, a bilateral solver can construct view-dependent effects in non-reference views, making the inpainted region appear consistent from any view. For non-reference disoccluded regions, which cannot be supervised by the single reference view, we devise a method based on image inpainters to guide both the geometry and appearance. Our approach shows superior performance to NeRF inpainting baselines, with the additional advantage that a user can control the generated scene via a single inpainted image. Project page: https://ashmrz.github.io/reference-guided-3d
翻译:神经辐射场(NeRF)在视角合成方面的流行引起了对NeRF编辑工具的需求。在这里,我们专注于以一种视图一致且可控的方式修复区域。除了典型的NeRF输入和在每个视图中标明不需要的区域的蒙版之外,我们仅需要场景的单个修复视图。我们使用单目深度估计器将修复视图反投影到正确的三维位置。然后,通过一种新的渲染技术,双边求解器可以在非参考视图中构造视图相关效果,使修复区域从任何视角看起来一致。对于无参考不连续区域,即无法受到单个参考视图监督的区域,我们设计了一种基于图像修复器的方法来指导几何和外观。我们的方法比NeRF修复基线表现更好,并且额外具有用户可以通过单个修复图像控制生成的场景的优势。项目页面:https://ashmrz.github.io/reference-guided-3d