Online learning with expert advice is a fundamental problem of sequential prediction. In this problem, the algorithm has access to a set of $n$ "experts" who make predictions on each day. The goal on each day is to process these predictions, and make a prediction with the minimum cost. After making a prediction, the algorithm sees the actual outcome on that day, updates its state, and then moves on to the next day. An algorithm is judged by how well it does compared to the best expert in the set. The classical algorithm for this problem is the multiplicative weights algorithm. However, every application, to our knowledge, relies on storing weights for every expert, and uses $\Omega(n)$ memory. There is little work on understanding the memory required to solve the online learning with expert advice problem, or run standard sequential prediction algorithms, in natural streaming models, which is especially important when the number of experts, as well as the number of days on which the experts make predictions, is large. We initiate the study of the learning with expert advice problem in the streaming setting, and show lower and upper bounds. Our lower bound for i.i.d., random order, and adversarial order streams uses a reduction to a custom-built problem using a novel masking technique, to show a smooth trade-off for regret versus memory. Our upper bounds show novel ways to run standard sequential prediction algorithms in rounds on small "pools" of experts, thus reducing the necessary memory. For random-order streams, we show that our upper bound is tight up to low order terms. We hope that these results and techniques will have broad applications in online learning, and can inspire algorithms based on standard sequential prediction techniques, like multiplicative weights, for a wide range of other problems in the memory-constrained setting.


翻译:通过专家咨询在线学习是连续预测的根本问题。 在这个问题中, 算法可以获取每天作出预测的一组美元“ 专家” 。 每天的目标是处理这些预测, 并以最低成本进行预测。 在作出预测后, 算法会看到当日的实际结果, 更新其状态, 然后继续到第二天。 算法会根据它与集中最佳专家相比的成绩来判断。 这个问题的典型算法是多复制加权算法。 但是, 每一个应用程序, 根据我们的知识, 都依赖于每个专家的存储权重, 并使用 $\ omega (n) 内存 。 在理解用专家咨询问题解决在线学习所需的记忆, 或者在自然流模型中运行标准的序列预测算算法。 当专家人数和专家作出类似预测的天数都很大的时候, 我们开始研究流中的专家建议的结果, 并且显示更低和上层的内存。 因此, 我们的内存和上层的内存技术将显示一个更低的顺序。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Markovian Interference in Experiments
Arxiv
0+阅读 · 2022年6月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员