The paper researches the problem of concept and patient representations in the medical domain. We present the patient histories from Electronic Health Records (EHRs) as temporal sequences of ICD concepts for which embeddings are learned in an unsupervised setup with a transformer-based neural network model. The model training was performed on the collection of one million patients' histories in 6 years. The predictive power of such a model is assessed in comparison with several baseline methods. A series of experiments on the MIMIC-III data show the advantage of the presented model compared to a similar system. Further, we analyze the obtained embedding space with regards to concept relations and show how knowledge from the medical domain can be successfully transferred to the practical task of insurance scoring in the form of patient embeddings.


翻译:论文研究了医疗领域的概念和病人陈述问题。我们把电子健康记录(EHRs)中的病人记录作为ICD概念的时间序列,在未经监督的设置中学习嵌入的ICD概念,采用以变压器为基础的神经网络模型。模型培训是在6年内收集100万病人历史的6年中进行的。这种模型的预测力与若干基线方法相比较得到评估。关于MIMIC-III数据的一系列实验表明,与类似系统相比,所呈现的模式具有优势。此外,我们分析了在概念关系方面获得的嵌入空间,并展示了如何成功地将医疗领域的知识转移到以病人嵌入形式进行保险评分的实际任务上。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
88+阅读 · 2021年6月29日
报告 |事理图谱的构建及应用,附61页pdf
专知会员服务
189+阅读 · 2020年1月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
报告 |事理图谱的构建及应用,附61页pdf
专知会员服务
189+阅读 · 2020年1月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员