Federated recommendation is a new Internet service architecture that aims to provide privacy-preserving recommendation services in federated settings. Existing solutions are used to combine distributed recommendation algorithms and privacy-preserving mechanisms. Thus it inherently takes the form of heavyweight models at the server and hinders the deployment of on-device intelligent models to end-users. This paper proposes a novel Personalized Federated Recommendation (PFedRec) framework to learn many user-specific lightweight models to be deployed on smart devices rather than a heavyweight model on a server. Moreover, we propose a new dual personalization mechanism to effectively learn fine-grained personalization on both users and items. The overall learning process is formulated into a unified federated optimization framework. Specifically, unlike previous methods that share exactly the same item embeddings across users in a federated system, dual personalization allows mild finetuning of item embeddings for each user to generate user-specific views for item representations which can be integrated into existing federated recommendation methods to gain improvements immediately. Experiments on multiple benchmark datasets have demonstrated the effectiveness of PFedRec and the dual personalization mechanism. Moreover, we provide visualizations and in-depth analysis of the personalization techniques in item embedding, which shed novel insights on the design of RecSys in federated settings.
翻译:联邦建议是一个新的互联网服务架构,目的是在联邦环境中提供隐私保护建议服务; 现有解决方案被用于将分布式建议算法和隐私保护机制结合起来; 其内在形式是服务器的重量模型,从而阻碍向最终用户部署在设备上安装的智能模型; 本文提出一个新的个人化建议(PFedRec)框架,以学习许多针对用户的轻量级模型,用于智能设备,而不是用于服务器上的重量级模型; 此外,我们提议一个新的双重个人化机制,以有效学习用户和项目方面的细微个人化。 总体学习进程被发展成一个统一的联邦化优化框架。 具体地说,与以前在联邦系统中完全共享相同项目在用户之间嵌入同一项目的方法不同,双个人化框架允许对每个用户的项目嵌入进行轻度的微调调整,以生成针对特定用户的项目表达意见,这些观点可以纳入现有的联邦建议方法,以立即获得改进。 对多个基准数据集的实验展示了PFedRec和双重个人化的双重个人化方法的有效性,我们在个人化的深度分析中提供个人化的深入的自我分析。