Whilst lattice-based cryptosystems are believed to be resistant to quantum attack, they are often forced to pay for that security with inefficiencies in implementation. This problem is overcome by ring- and module-based schemes such as Ring-LWE or Module-LWE, whose keysize can be reduced by exploiting its algebraic structure, allowing for neater and faster computations. Many rings may be chosen to define such cryptoschemes, but cyclotomic rings, due to their cyclic nature allowing for easy multiplication, are the community standard. However, there is still much uncertainty as to whether this structure may be exploited to an adversary's benefit. In this paper, we show that the decomposition group of a cyclotomic ring of arbitrary conductor may be utilised in order to significantly decrease the dimension of the ideal (or module) lattice required to solve a given instance of SVP. Moreover, we show that there exist a large number of rational primes for which, if the prime ideal factors of an ideal lie over primes of this form, give rise to an "easy" instance of SVP. However, it is important to note that this work does not break Ring-LWE or Module-LWE, since the security reduction is from worst case ideal or module SVP to average case Ring-LWE or Module-LWE respectively, and is one way.


翻译:虽然据信基于拉蒂的加密系统对量子攻击有抗力,但它们往往被迫为这种安全付出代价,执行效率低下。这个问题通过环状和模块式计划,如环式LWE或模块-LWE(其关键大小可以通过利用代数结构减少,从而进行更清洁和更快的计算)来克服。许多环可以选择来定义这种加密化学,但环状环状环,因为它们的周期性性质允许容易的倍增,是社区的标准。然而,对于这一结构是否可以被利用来为对手的利益服务,还存在着很大的不确定性。在本文中,我们表明,任意导体环状环的分解组可以通过利用其代数,从而大大降低理想(或模块)的尺寸,从而解决SVP的某个实例。此外,我们表明,由于这些圆形的周期性周期性周期性,如果理想性的最佳因素存在于这一形式之上,那么这种结构是否会被利用为对手的利益所取代。我们表明,自SWE-P的“最坏的”或“最坏的”模式,因此,SWE-WE-B-B-S-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-SWE-SWE-S-S-S-S-S-S-S-S-S-S-B-S-S-S-B-B-B-B-S-S-B-S-S-S-S-B-S-S-S-S-S-S-WE-S-S-S-S-S-S-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员