In this paper, we present an online motion planning algorithm (3D-OGSE) for generating smooth, collision-free trajectories over multiple planning iterations for 3-D agents operating in an unknown obstacle-cluttered 3-D environment. Our approach constructs a safe-region, termed 'generalized shape', at each planning iteration, which represents the obstacle-free region based on locally-sensed environment information. A collision-free path is computed by sampling points in the generalized shape and is used to generate a smooth, time-parametrized trajectory by minimizing snap. The generated trajectories are constrained to lie within the generalized shape, which ensures the agent maneuvers in the locally obstacle-free space. As the agent reaches boundary of 'sensing shape' in a planning iteration, a re-plan is triggered by receding horizon planning mechanism that also enables initialization of the next planning iteration. Theoretical guarantee of probabilistic completeness over the entire environment and of completely collision-free trajectory generation is provided. We evaluate the proposed method in simulation on complex 3-D environments with varied obstacle-densities. We observe that each re-planing computation takes $\sim$1.4 milliseconds on a single thread of an Intel Core i5-8500 3.0 GHz CPU. In addition, our method is found to perform 4-10 times faster than several existing algorithms. In simulation over complex scenarios such as narrow passages also we observe less conservative behavior.


翻译:在本文中,我们展示了一种在线运动规划算法(3D-OGSE),用于为在未知障碍层3D环境中运作的三维代理商生成滑滑的、无碰撞的多层规划迭代。我们的方法在每次规划迭代中构建一个安全区域,称为“通用形状 ”,这是基于当地感应环境信息的无障碍区域。一个无碰撞路径由普遍形状的取样点计算,用来通过最小化加速生成一个平稳、无时间平衡的轨迹。产生的轨迹限于通用形状,确保三维代理商在本地无障碍空间中进行操纵。当代理商在规划迭代中达到“简易形状”的界限时,一个重新规划的触发因素是重新启用地平线规划机制,这也能够启动下一个规划的迭代。提供了整个环境中的概率完整性和完全无碰撞轨迹生成的理论保证。我们评估了复杂的3D环境的模拟方法,使用不同障碍度的轨迹定轨道,也确保了当地无障碍空间的机动性。 我们观察了每个C-8的轨迹测方法在目前4-10MR 中,我们观察了每进行一个C-Nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
已删除
将门创投
9+阅读 · 2019年11月15日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
已删除
将门创投
9+阅读 · 2019年11月15日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员