This paper proposes an $SE_2(3)$ based extended Kalman filtering (EKF) framework for the inertial-integrated state estimation problem. The error representation using the straight difference of two vectors in the inertial navigation system may not be reasonable as it does not take the direction difference into consideration. Therefore, we choose to use the $SE_2(3)$ matrix Lie group to represent the state of the inertial-integrated navigation system which consequently leads to the common frame error representation. With the new velocity and position error definition, we leverage the group affine dynamics with the autonomous error properties and derive the error state differential equation for the inertial-integrated navigation on the north-east-down (NED) navigation frame and the earth-centered earth-fixed (ECEF) frame, respectively, the corresponding EKF, terms as $SE_2(3)$ based EKF has also been derived. It provides a new perspective on the geometric EKF with a more sophisticated formula for the inertial-integrated navigation system. Furthermore, we design two new modified error dynamics on the NED frame and the ECEF frame respectively by introducing new auxiliary vectors. Finally the equivalence of the left-invariant EKF and left $SE_2(3)$ based EKF have been shown in navigation frame and ECEF frame.
翻译:本文为惯性综合状态估算问题提出了一个基于 $SE_2(3)美元基于 $SE_2(3)美元的卡曼扩展过滤框架。 使用惯性导航系统中两个矢量的直差对惯性- 综合导航框架的误差表示可能不合理, 因为它没有考虑到方向差异。 因此, 我们选择使用 $SE_ 2(3)美元矩阵 Lie 组来代表惯性- 综合导航系统的状况, 从而导致共同框架错误表示。 有了新的速度和位置错误定义, 我们用自动错误特性来利用该组的近似动态, 并得出北向( NED) 导航框架和以地为主的地球固定( ECF) 框架的误差状态差方差方差方程式, 相应的 EKF 术语是 $SE_ 2(3), 以 EKF 为基础的惯性导航系统状态。 最后, 以 ECEF 和以 美元为基的左向式导航框架显示的ECFF 。