We study randomized quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for $L^p$-functions with any $p>1$. The variance of the scrambled net quadrature for $L^2$-functions can be evaluated through the set of the so-called gain coefficients. In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2021) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.
翻译:我们研究的是用炒鱼网混成的半蒙特卡罗。 炒鱼网的二次曲线长期以来一直受到欢迎, 因为它是真实整体的公正估计符, 允许实际的错误估计, 实现顺利功能差异的高度顺序衰减, 甚至用任何$p>1美元来运行 $L p$ 函数。 用于 $L $ 2 函数的盘旋净额二次曲线的差异可以通过一套所谓的增益系数来评估。 在本文中, 基于沃尔什 函数系统和双网概念, 我们提供了更好的数字网总基底的增益系数上限。 我们的结果解释了Owen(1997) (1997) 对Faure 序列的已知约束, 最近由Pan 和 Owen (2021) 对基底2 数字网( 包括Sobol 序列作为特例) 的调整, 以及他们的调查结果是, 基底2 数字网的所有非零增益系数都必须是两种权力, 以统一的方式。