With the steady emergence of community question answering (CQA) platforms like Quora, StackExchange, and WikiHow, users now have an unprecedented access to information on various kind of queries and tasks. Moreover, the rapid proliferation and localization of these platforms spanning geographic and linguistic boundaries offer a unique opportunity to study the task requirements and preferences of users in different socio-linguistic groups. In this study, we implement an entity-embedding model trained on a large longitudinal dataset of multi-lingual and task-oriented question-answer pairs to uncover and quantify the (i) prevalence and distribution of various online tasks across linguistic communities, and (ii) emerging and receding trends in task popularity over time in these communities. Our results show that there exists substantial variance in task preference as well as popularity trends across linguistic communities on the platform. Findings from this study will help Q&A platforms better curate and personalize content for non-English users, while also offering valuable insights to businesses looking to target non-English speaking communities online.
翻译:随着诸如Quora、StackExchange和WikiHow等社区解答平台(CQA)的不断出现,用户现在可以空前地获得关于各种查询和任务的信息;此外,这些跨越地理和语言边界的平台的迅速扩散和本地化为研究不同社会语言群体用户的任务要求和偏好提供了一个独特的机会;在这项研究中,我们实施了一个由实体组成的模式,对多语言和面向任务的问答组合的大型纵向数据集进行了培训,以发现和量化(一) 各种在线任务在各语言社区的普遍性和分布,以及(二) 任务受欢迎程度逐渐出现和消退的趋势;我们的结果显示,在任务偏好以及平台上各语言社区受欢迎趋势方面存在巨大差异;这项研究的结果将有助于“平台”更好地为非英语用户翻译和个性化内容,同时为寻找在线目标的非英语社区的企业提供宝贵的见解。