Current implementations of multiresolution methods are limited in terms of possible types of responses and approaches to inference. We provide a multiresolution approach for spatial analysis of non-Gaussian responses using latent Gaussian models and Bayesian inference via integrated nested Laplace approximation (INLA). The approach builds on `LatticeKrig', but uses a reparameterization of the model parameters that is intuitive and interpretable so that modeling and prior selection can be guided by expert knowledge about the different spatial scales at which dependence acts. The priors can be used to make inference robust and integration over model parameters allows for more accurate posterior estimates of uncertainty. The extended LatticeKrig (ELK) model is compared to a standard implementation of LatticeKrig (LK), and a standard Mat\'ern model, and we find modest improvement in spatial oversmoothing and prediction for the ELK model for counts of secondary education completion for women in Kenya collected in the 2014 Kenya demographic health survey. Through a simulation study with Gaussian responses and a realistic mix of short and long scale dependencies, we demonstrate that the differences between the three approaches for prediction increases with distance to nearest observation.
翻译:目前多分辨率方法的实施在可能的响应类型和推断方法方面是有限的,目前对多分辨率方法的实施在可能的响应类型和假设方法方面是有限的。我们利用潜潜伏高山模型和巴伊西亚推论,通过综合嵌巢拉普尔近效(INLA),为非古裔反应的空间分析提供了一种多分辨率方法。这种方法以“LatticeKrig(LatticeKrig)”和标准马特尔恩模型为基础,对模型参数进行了重新校准,这种模型具有直观和可解释性,以便模型和事先选择可以以专家对依赖行为所处不同空间尺度的专家知识为指导。可以利用前文来进行推导,对模型参数进行稳健和整合,以便能够对不确定性进行更准确的后视估计。扩展的LatticeKrig(ELK)模型与LatticeKrig(LK)的标准实施和标准马特尔恩模型相比,我们发现在空间过度覆盖和预测ELK模型模型方面略有改进,以便根据2014年肯尼亚人口健康调查中收集的肯尼亚妇女完成中等教育的成绩。通过模拟研究,与戈斯反应和最近距离观测方法之间的模拟研究,我们展示了短期和最近距离观测差异。