The precision anticipated from next-generation cosmic microwave background (CMB) surveys will create opportunities for characteristically new insights into cosmology. Secondary anisotropies of the CMB will have an increased importance in forthcoming surveys, due both to the cosmological information they encode and the role they play in obscuring our view of the primary fluctuations. Quadratic estimators have become the standard tools for reconstructing the fields that distort the primary CMB and produce secondary anisotropies. While successful for lensing reconstruction with current data, quadratic estimators will be sub-optimal for the reconstruction of lensing and other effects at the expected sensitivity of the upcoming CMB surveys. In this paper we describe a convolutional neural network, ResUNet-CMB, that is capable of the simultaneous reconstruction of two sources of secondary CMB anisotropies, gravitational lensing and patchy reionization. We show that the ResUNet-CMB network significantly outperforms the quadratic estimator at low noise levels and is not subject to the lensing-induced bias on the patchy reionization reconstruction that would be present with a straightforward application of the quadratic estimator.
翻译:下一代宇宙微波背景(CMB)调查的准确性将为对宇宙学进行独特的新洞察创造机会。CMB的二次血管测量将在即将到来的调查中具有更大的重要性,这是因为它们编码的宇宙学信息以及它们在掩盖我们对原始波动的看法方面所发挥的作用。Quadratic 估计器已成为重建那些扭曲初级宇宙微波背景(CMB)和产生二次血管测量的字段的标准工具。在用当前数据对重建进行透视成功的同时,四极估计器将成为在即将到来的CMB调查的预期敏感度上重建透镜和其他效应的次最佳对象。在本文中,我们描述了一个革命神经网络,ResUNet-CMB,它能够同时重建二级CMB的两种来源,即重现显镜和补花。我们表明ResUNet-CMB网络在以当前低噪音水平对二次测量器的测量器进行显著超越了微镜像测量仪的尺寸,并且不会成为当前透镜层重建的直径偏差应用。