The precision anticipated from next-generation cosmic microwave background (CMB) surveys will create opportunities for characteristically new insights into cosmology. Secondary anisotropies of the CMB will have an increased importance in forthcoming surveys, due both to the cosmological information they encode and the role they play in obscuring our view of the primary fluctuations. Quadratic estimators have become the standard tools for reconstructing the fields that distort the primary CMB and produce secondary anisotropies. While successful for lensing reconstruction with current data, quadratic estimators will be sub-optimal for the reconstruction of lensing and other effects at the expected sensitivity of the upcoming CMB surveys. In this paper we describe a convolutional neural network, ResUNet-CMB, that is capable of the simultaneous reconstruction of two sources of secondary CMB anisotropies, gravitational lensing and patchy reionization. We show that the ResUNet-CMB network significantly outperforms the quadratic estimator at low noise levels and is not subject to the lensing-induced bias on the patchy reionization reconstruction that would be present with a straightforward application of the quadratic estimator.


翻译:下一代宇宙微波背景(CMB)调查的准确性将为对宇宙学进行独特的新洞察创造机会。CMB的二次血管测量将在即将到来的调查中具有更大的重要性,这是因为它们编码的宇宙学信息以及它们在掩盖我们对原始波动的看法方面所发挥的作用。Quadratic 估计器已成为重建那些扭曲初级宇宙微波背景(CMB)和产生二次血管测量的字段的标准工具。在用当前数据对重建进行透视成功的同时,四极估计器将成为在即将到来的CMB调查的预期敏感度上重建透镜和其他效应的次最佳对象。在本文中,我们描述了一个革命神经网络,ResUNet-CMB,它能够同时重建二级CMB的两种来源,即重现显镜和补花。我们表明ResUNet-CMB网络在以当前低噪音水平对二次测量器的测量器进行显著超越了微镜像测量仪的尺寸,并且不会成为当前透镜层重建的直径偏差应用。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
6+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员