Particle flow filters solve Bayesian inference problems by smoothly transforming a set of particles into samples from the posterior distribution. Particles move in state space under the flow of an Ito dynamical system. This work introduces the Variational Fokker-Planck (VFP) framework for data assimilation, a general approach that includes previously known particle flow filters as special cases. The Ito process that transforms particles is defined via an optimal drift that depends on the selected diffusion term. It is established that the underlying probability density - sampled by the ensemble of particles - converges to the Bayesian posterior probability density. For a finite number of particles the optimal drift contains a regularization term that nudges particles toward becoming independent random variables. Based on this analysis, we derive computationally feasible approximate regularization approaches that penalize the mutual information between pairs of particles, and avoid particle collapse. Moreover, the Ito diffusion plays the role of a particle rejuvenation approach that also alleviates particle collapse. The VFP framework is very flexible. Different assumptions on prior and intermediate probability distributions can be used to implement the optimal drift, and localization and covariance shrinkage can be applied to alleviate the curse of dimensionality. A robust implicit-explicit method is discussed for the efficient integration of stiff Ito processes. The effectiveness of the VFP framework is demonstrated on three progressively more challenging test problems, namely the Lorenz 63, Lorenz 96 and the quasi-geostrophic equations.
翻译:粒子流过滤器通过将一组粒子顺利地转换成从子宫分布的样本来解决贝叶斯的推论问题。 粒子在Ito动态系统流动的状态空间中移动。 这项工作引入了数据同化的动态 Fokker- Planck( VFP) 框架, 将先前已知的粒子流过滤器作为特例纳入这一总体方法。 转化粒子的Ito过程是通过一个取决于选定扩散术语的最佳漂移来定义的。 已经确定, 由粒子集合取样的粒子的精度密度将集中到Bayesian 远端概率密度。 对于数量有限的粒子, 最佳漂移含有一个固定化术语, 将粒子推向独立的随机变异变量。 基于这一分析, 我们推算出一个可行的大致规范化方法, 惩罚粒子两组之间的相互信息, 避免粒子崩溃。 此外, 粒子再现法的作用是粒子再现方法, 减轻粒子崩溃。 VFPF框架非常灵活。 对于先前和中间概率分布的假设可以应用不同的假设, 来实施最佳的精度流流流流和软化法, 。 递化法的精度检验法的精度检验法的精确度和软化法是,, 的精度的精度的精度检验法的精度的精度和软化法的精度的精度的精度的精度的精度的精度的精度的精度框架,,, 的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 。 的精度的精度的精度的精度的精度的精度的精度和软度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度是的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度