Mining attacks aim to gain an unfair share of extra rewards in the blockchain mining. Selfish mining can preserve discovered blocks and strategically release them, wasting honest miners' computing resources and getting higher profits. Previous mining attacks either conceal the mined whole blocks (hiding or discarding), or release them completely in a particular time slot (e.g., causing a fork). In this paper, we extend the mining attack's strategy space to partial block sharing, and propose a new and feasible Partial Selfish Mining (PSM) attack. We show that by releasing partial block data publicly and attracting rational miners to work on attacker's private branch, attackers and these attracted miners can gain an unfair share of mining rewards. We then propose Advanced PSM (A-PSM) attack that can further improve attackers' profits to be no less than the selfish mining. Both theoretical and experimental results show that PSM attackers can be more profitable than selfish miners under a certain range of mining power and network conditions. A-PSM attackers can gain even higher profits than both selfish mining and honest mining with attracted rational miners.


翻译:自采矿业可以保留已发现的区块并在战略上释放这些区块,浪费诚实的矿工的计算资源并获取更高的利润。 以往的采矿攻击要么隐藏整个区块(隐藏或丢弃)的雷区,要么在特定时间段(例如造成叉子)完全释放这些区块。 在本文中,我们将采矿攻击的战略空间扩大到部分区块分享,并提出新的和可行的部分自营采矿(PSM)攻击。我们表明,公开公布部分区块数据并吸引理性的矿工从事攻击者私人分支、攻击者和这些吸引的矿工的采矿活动,可以获得不公平的采矿收益份额。我们随后提议采用高级PSM(A-PSM)攻击,以进一步提高攻击者的利润,使其不少于自私的采矿。 理论和实验结果都表明,在一定范围的采矿能力和网络条件下,PSM攻击者比自私的采矿者更有利可图。 A-PSM攻击者可以比自私的采矿者和吸引的合理采矿者获得更高的利润。

0
下载
关闭预览

相关内容

【MIT Sam Hopkins】如何读论文?How to Read a Paper
专知会员服务
105+阅读 · 2022年3月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
13+阅读 · 2019年11月14日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员