In this paper we carry out a numerical investigation of forced convection heat transfer from a heated elliptical cylinder in a uniform free stream with angle of inclination $\theta^{\circ}$. Numerical simulations were carried out for $10 \leq Re \leq 120$, $0^{\circ} \leq \theta \leq 180^{\circ}$, and $Pr = 0.71$. Results are reported for both steady and unsteady state regime in terms of streamlines, vorticity contours, isotherms, drag and lift coefficients, Strouhal number, and Nusselt number. In the process, we also propose a novel method of computing the Nusselt number by merely gathering flow information along the normal to the ellipse boundary. The critical $Re$ at which which flow becomes unsteady, $Re_c$ is reported for all the values of $\theta$ considered and found to be the same for $\theta$ and $180^\circ -\theta$ for $0^\circ \leq \theta \leq 90^\circ$. In the steady regime, the $Re$ at which flow separation occurs progressively decreases as $\theta$ increases. The surface averaged Nusselt number ($Nu_{\text{av}}$) increases with $Re$, whereas the drag force experienced by the cylinder decreases with $Re$. The transient regime is characterized by periodic vortex shedding, which is quantified by the Strouhal number ($St$). Vortex shedding frequency increases with $Re$ and decreases with $\theta$ for a given $Re$. $Nu_{\text{av}}$ also exhibits a time-varying oscillatory behaviour with a time period which is half the time period of vortex shedding. The amplitude of oscillation of $Nu_{\text{av}}$ increases with $\theta$.
翻译:本文通过数值模拟研究了加热椭圆柱体在自由流中的强制对流传热,探究了不同的倾斜角度 $\theta^{\circ}$ 在 $10 \leq Re \leq 120$,$0^{\circ} \leq \theta \leq 180^{\circ}$ 以及 $Pr=0.71$ 的条件下的情况。研究结果主要包括定常和非定常流动情况下的流线型、漩涡轮廓、等温线、阻力系数、升力系数、斯特劳哈尔数和努塞尔数。此外,我们还提出了一种新的计算努塞尔数的方法,只需沿椭圆边缘的法向收集流动信息即可。对于所有考虑的 $\theta$ 值,我们报告了流动变为非定常流动的临界 $Re$ 值 $Re_c$,发现当 $0^{\circ} \leq \theta \leq 90^\circ$ 时 $\theta$ 和 $180^\circ -\theta$ 的值相同。在定常流动状态下,随着 $\theta$ 的增加,流动分离的 $Re$ 逐渐减小。表面平均努塞尔数 $Nu_{\text{av}}$ 随 $Re$ 增加而增加,而圆柱体所受的阻力则随 $Re$ 减小。暂态流动的特征是周期性的涡 shedding,其被经由斯特劳哈尔数 ($St$) 评价,然后可知这一项随 $Re$ 增大而增加,对于给定的 $Re$,随着 $\theta$ 的减小而减小。在 $Nu_{\text{av}}$ 中,震荡振幅随 $\theta$ 的增加而增加,在暂态流动的状态下,它还表现出一种时间上的振荡行为,其时间周期为涡 shedding 的一半。