A model has been proposed in [Baruah et al., in Proceedings of the IEEE Real-Time Systems Symposium 2012] for representing recurrent precedence-constrained tasks to be executed on multiprocessor platforms, where each recurrent task is modeled by a directed acyclic graph (DAG), a period, and a relative deadline. Each vertex of the DAG represents a sequential job, while the edges of the DAG represent precedence constraints between these jobs. All the jobs of the DAG are released simultaneously and have to be completed within some specified relative deadline. The task may release jobs in this manner an unbounded number of times, with successive releases occurring at least the specified period apart. The feasibility problem is to determine whether such a recurrent task can be scheduled to always meet all deadlines on a specified number of dedicated processors. The case of a single task has been considered in [Baruah et al., 2012]. The main contribution of this paper is to consider the case of multiple tasks. We show that EDF has a speedup bound of 2-1/m, where m is the number of processors. Moreover, we present polynomial and pseudopolynomial schedulability tests, of differing effectiveness, for determining whether a set of sporadic DAG tasks can be scheduled by EDF to meet all deadlines on a specified number of processors.
翻译:在[Baruah等人,2012年IEEE实时系统专题讨论会的议事录 中,提出了一种模式,用于代表需在多处理平台上执行的经常性受优先限制的任务,其中每个经常性任务都以定向循环图(DAG)为模型,一个时期和一个相对的最后期限为模型。DAG的每个顶点代表着一个相继的工作,而DAG的边缘代表着这些工作之间的优先限制。DAG的所有工作都同时释放出来,并且必须在一个特定的相对最后期限内完成。任务可能以这种方式释放工作的次数不受限制,至少连续释放的时间间隔相隔一段时间。可行性问题在于确定这样一个经常性任务是否总是能够按照特定数量的专用处理器(DAG)的所有最后期限安排。一个单一任务的例子已经在[Baruah等人,2012年]中得到了考虑。本文的主要贡献是考虑多项任务的情况。我们表明EDFF的加速度为2-1/m,其中的加速度是一定的处理器数量。此外,我们提出的一个多式和假式的测试是不同周期性的任务的周期性,是否达到AFDF的所有周期性任务。