Aspect-based sentiment analysis (ABSA) is an emerging fine-grained sentiment analysis task that aims to extract aspects, classify corresponding sentiment polarities and find opinions as the causes of sentiment. The latest research tends to solve the ABSA task in a unified way with end-to-end frameworks. Yet, these frameworks get fine-tuned from downstream tasks without any task-adaptive modification. Specifically, they do not use task-related knowledge well or explicitly model relations between aspect and opinion terms, hindering them from better performance. In this paper, we propose SentiPrompt to use sentiment knowledge enhanced prompts to tune the language model in the unified framework. We inject sentiment knowledge regarding aspects, opinions, and polarities into prompt and explicitly model term relations via constructing consistency and polarity judgment templates from the ground truth triplets. Experimental results demonstrate that our approach can outperform strong baselines on Triplet Extraction, Pair Extraction, and Aspect Term Extraction with Sentiment Classification by a notable margin.
翻译:基于透视的情绪分析(ABSA)是一项新出现的微小情绪分析任务,旨在提取一些方面,对相应的情绪极化进行分类,并找到意见作为情绪的起因。最新研究往往以最终到终框架统一解决ABSA的任务。然而,这些框架在没有任务调整的情况下,从下游任务中得到微调。具体地说,它们没有很好地利用任务相关知识,也没有明确地利用任务相关知识在方面和观点术语之间建立模范关系,阻碍了它们更好的表现。在本文中,我们建议SentiPrompt使用感知增强的速率来调和统一框架中的语言模式。我们通过从地面真相三重中构建一致性和极性判断模板,将关于各个方面、观点和极性的意见引入迅速和明确的示范术语关系。实验结果表明,我们的方法可以超越Triplet Expliton、Pair Expliton和Aspect Termation Exprison的强大基线,以显著的距离。