Hopfield attractor networks are robust distributed models of human memory. We propose construction rules such that an attractor network may implement an arbitrary finite state machine (FSM), where states and stimuli are represented by high-dimensional random bipolar vectors, and all state transitions are enacted by the attractor network's dynamics. Numerical simulations show the capacity of the model, in terms of the maximum size of implementable FSM, to be linear in the size of the attractor network. We show that the model is robust to imprecise and noisy weights, and so a prime candidate for implementation with high-density but unreliable devices. By endowing attractor networks with the ability to emulate arbitrary FSMs, we propose a plausible path by which FSMs may exist as a distributed computational primitive in biological neural networks.
翻译:霍普菲尔德吸引者网络是强大的人类记忆分布模型。 我们提议了建筑规则,使吸引者网络可以使用任意的限定状态机器(FSM ), 州和刺激器由高维随机双极矢量代表,所有州过渡都由吸引者网络的动态决定。 从可执行的FSM的最大规模来看,数字模拟显示模型的能力是线性,相当于吸引者网络的大小。我们表明,该模型对于不精确和吵闹的重量是强大的,因此是使用高密度但不可靠的装置执行的首选。 通过赋予吸引者网络以模仿任意FSMS的能力,我们提出了一种可行的途径,使FSMMs能够作为生物神经网络中分布式的计算原始体存在。