We study Martin-L\"{o}f random (ML-random) points on computable probability measures on sample and parameter spaces (Bayes models). We consider four variants of conditional random sequences with respect to the conditional distributions: two of them are defined by ML-randomness on Bayes models and the others are defined by blind tests for conditional distributions. We consider a weak criterion for conditional ML-randomness and show that only variants of ML-randomness on Bayes models satisfy the criterion. We show that these four variants of conditional randomness are identical when the conditional probability measure is computable and the posterior distribution converges weakly to almost all parameters. We compare ML-randomness on Bayes models with randomness for uniformly computable parametric models. It is known that two computable probability measures are orthogonal if and only if their ML-random sets are disjoint. We extend these results for uniformly computable parametric models. Finally, we present an algorithmic solution to a classical problem in Bayes statistics, i.e.~the posterior distributions converge weakly to almost all parameters if and only if the posterior distributions converge weakly to all ML-random parameters.
翻译:我们研究关于抽样和参数空间(Bayes模型)的可计算概率计量的Martin-L\\"{o}f 随机(ML-random)点(ML-random)点(ML-random)点(Bayes模型)。我们考虑四个关于有条件分布的有条件随机序列变种:其中两个由Bayes模型的ML-randomnis定义,而其他则由有条件分布的盲测试定义。我们认为,有条件的ML-randomis(ML-randomismations)是有条件的 ML-randomis(ML-randomis)值的弱标准,但只有其ML-Randomis模型不兼容,我们才能将这些结果推广到一致的可比较的参数。最后,当有条件的概率计量是可比较的有条件随机随机随机变量,而后,外表分布分布的四种变种则与几乎所有参数相弱的典型的Bayes统计(i)中的典型问题有算法解决办法。我们比较了Bayes统计,即:Moslod-laply laslodal-lidaldaldal-ldaldrodrodormissionaldrolations 参数,如果所有的差差差分布参数只有所有微的差的差的差的分布参数都趋同。