Prior proposals for cumulative statistics suggest making tiny random perturbations to the scores (independent variables in a regression) in order to ensure the scores' uniqueness. Uniqueness means that no score for any member of the population or subpopulation being analyzed is exactly equal to any other member's score. It turns out to be possible to construct from the original data a weighted data set that modifies the scores, weights, and responses (dependent variables in the regression) such that the new scores are unique and (together with the new weights and responses) yield the desired cumulative statistics for the original data. This reduces the problem of analyzing data with scores that may not be unique to the problem of analyzing a weighted data set with scores that are unique by construction. Recent proposals for cumulative statistics have already detailed how to process weighted samples whose scores are unique.
翻译:先前的累积统计提案表明,为确保得分的独特性,对得分(回归中的独立变量)进行微小的随机扰动,以确保得分的独特性。 独特性意味着所分析的人口或亚人口的任何分数均不等于任何其他成员的分数。 事实证明,有可能从原始数据中建立一套加权数据,以修改得分、加权和答复(回归中的独立变量),使新得分是独特的,并且(加上新的权重和答复)为原始数据提供所需的累积统计数据。 这减少了用得分分析数据的问题,而得分可能与分析加权数据的问题不尽相同,而加权数据的得分通过构建得分是独一无二的。 最近关于累积统计的建议已经详细说明了如何处理得分独特的加权抽样的方法。