Existing solutions to network scheduling typically assume that the instantaneous link rates are completely known before a scheduling decision is made or consider a bandit setting where the accurate link quality is discovered only after it has been used for data transmission. In practice, the decision maker can obtain (relatively accurate) channel information, e.g., through beamforming in mmWave networks, right before data transmission. However, frequent beamforming incurs a formidable overhead in densely deployed mmWave WLANs. In this paper, we consider the important problem of throughput optimization with joint link probing and scheduling. The problem is challenging even when the link rate distributions are pre-known (the offline setting) due to the necessity of balancing the information gains from probing and the cost of reducing the data transmission opportunity. We develop an approximation algorithm with guaranteed performance when the probing decision is non-adaptive, and a dynamic programming based solution for the more challenging adaptive setting. We further extend our solutions to the online setting with unknown link rate distributions and develop a contextual-bandit based algorithm and derive its regret bound. Numerical results using data traces collected from real-world mmWave deployments demonstrate the efficiency of our solutions.


翻译:网络列表的现有解决方案通常假定,在作出时间安排决定之前,即时连接率已经完全为人所知,或考虑一个匪帮设置,只有在数据传输使用后才能发现准确连接质量。在实践中,决策者可以获取(相对准确的)频道信息,例如,在数据传输之前,即通过毫米Wave网络的波束成型,在数据传输之前,即可获得(相对准确的)频道信息。然而,频繁的波束成型在密集部署的毫米Wave网络中造成了巨大的间接费用。在本文件中,我们考虑了通过联合连接检测和时间安排来优化吞吐量的重要问题。即使由于必须平衡从测试中获得的信息收益和减少数据传输机会的成本,连结率分布是事先已知的(离线设置),这个问题也是具有挑战性的。我们开发了一种具有保证性性性性的工作算法,在作出这种决定时,就会发生更具有挑战性的适应性的环境。我们进一步扩展了我们的解决办法,以未知的链接率分布和基于背景的断路算法为基础,并形成了一种基于背景的算法,从而产生遗憾。通过从实际-世界中收集的数据效率解决方案来展示我们所收集的数据的数值。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月27日
Arxiv
13+阅读 · 2021年7月20日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员