The Epidemic Type Aftershock Sequence (ETAS) model is one of the most widely-used approaches to seismic forecasting. However most studies of ETAS use point estimates for the model parameters, which ignores the inherent uncertainty that arises from estimating these from historical earthquake catalogs, resulting in misleadingly optimistic forecasts. In contrast, Bayesian statistics allows parameter uncertainty to be explicitly represented, and fed into the forecast distribution. Despite its growing popularity in seismology, the application of Bayesian statistics to the ETAS model has been limited by the complex nature of the resulting posterior distribution which makes it infeasible to apply on catalogs containing more than a few hundred earthquakes. To combat this, we develop a new framework for estimating the ETAS model in a fully Bayesian manner, which can be efficiently scaled up to large catalogs containing thousands of earthquakes. We also provide easy-to-use software which implements our method.
翻译:地震后震序列(ETAS)模型是地震预报最广泛使用的方法之一。但是,大多数关于ETAS的研究对模型参数使用点估计值,忽略了从历史地震目录中估算这些参数产生的内在不确定性,从而产生误导性乐观的预测。相反,巴耶斯统计允许明确表达参数不确定性,并将其输入预测分布。尽管在地震学中这种数据越来越受欢迎,但Bayesian统计数据在ETAS模型中的应用却受到限制,因为由此形成的后方分布的复杂性质使得无法应用于包含几百多起地震的目录。为了解决这一问题,我们制定了一个新的框架,以完全巴耶斯方式估计ETAS模型,这可以有效地扩大为包含数千起地震的大型目录。我们还提供了便于使用的软件,用以实施我们的方法。