Given a simple, undirected graph $G$ with a threshold function $\tau:V(G) \rightarrow \mathbb{N}$, the \textsc{Target Set Selection} (TSS) problem is about choosing a minimum cardinality set, say $S \subseteq V(G)$, such that starting a diffusion process with $S$ as its seed set will eventually result in activating all the nodes in $G$. For any non-negative integer $i$, we say a set $T\subseteq V(G)$ is a "degree-$i$ modulator" of $G$ if the degree of any vertex in the graph $G-T$ is at most $i$. Degree-$0$ modulators of a graph are precisely its vertex covers. Consider a graph $G$ on $n$ vertices and $m$ edges. We have the following results on the TSS problem: -> It was shown by Nichterlein et al. [Social Network Analysis and Mining, 2013] that it is possible to compute an optimal-sized target set in $O(2^{(2^{t}+1)t}\cdot m)$ time, where $t$ denotes the cardinality of a minimum degree-$0$ modulator of $G$. We improve this result by designing an algorithm running in time $2^{O(t\log t)}n^{O(1)}$. -> We design a $2^{2^{O(t)}}n^{O(1)}$ time algorithm to compute an optimal target set for $G$, where $t$ is the size of a minimum degree-$1$ modulator of $G$.
翻译:鉴于一个简单、非方向的图形$G$, 其门槛函数为$\tau:V(G)\rightstarrow \mathb{N}$,\ textsc{Target选择} (TSS) 问题在于选择一个最小基数, 比如$S\subseteq V(G) 美元, 从而启动一个以美元为种子集的传播进程最终将导致以美元启动所有节点。 对于任何非负整数的美元, 我们说一套 $T\subseteq V(G) 美元是一个“ 度- 美元” 的调制 $G$, 如果图形中的任何顶数为$G- T$最多是美元 。 平面图的调制值是美元 。 以美元为美元和 美元 。 我们的 TSS 问题有以下结果 : > 由 Nicheterlein 和 美元 美元 表示, 美元 以 美元为 美元 美元 美元 美元 。 [Sonetel_O mmodeal roal 确定一个最小的 时间 。