Deep learning is regarded as a promising solution for reversible steganography. The recent development of end-to-end learning has made it possible to bypass multiple intermediate stages of steganographic operations with a pair of encoder and decoder neural networks. This framework is, however, incapable of guaranteeing perfect reversibility since it is difficult for this kind of monolithic machinery, in the form of a black box, to learn the intricate logics of reversible computing. A more reliable way to develop a learning-based reversible steganographic scheme is through a divide-and-conquer paradigm. Prediction-error modulation is a well-established modular framework that consists of an analytics module and a coding module. The former serves the purpose of analysing pixel correlations and predicting pixel intensities, while the latter specialises in reversible coding mechanisms. Given that reversibility is governed independently by the coding module, we narrow our focus to the incorporation of neural networks into the analytics module. The objective of this study is to evaluate the impacts of different training configurations on predictive neural networks and to provide practical insights. Context-aware pixel intensity prediction has a central role in reversible steganography and can be perceived as a low-level computer vision task. Therefore, instead of reinventing the wheel, we can adopt neural network models originally designed for such computer vision tasks to perform intensity prediction. Furthermore, we rigorously investigate the effect of intensity initialisation upon predictive performance and the influence of distributional shift in dual-layer prediction. Experimental results show that state-of-the-art steganographic performance can be achieved with advanced neural network models.
翻译:深层次学习被视为可逆方向学的一个很有希望的解决方案。 最近端到端的学习发展使得有可能绕过精密操作的多个中间阶段,使用一对编码器和解码神经网络。 但是,这个框架无法保证完全的可逆性, 因为这种单一机械, 以黑盒的形式, 很难学习可逆计算机的复杂逻辑。 一个更可靠的方法, 来开发一个基于学习的可逆方向的可逆度结构。 一个更可靠的方法, 发展一个基于学习的可逆本端至端的精度计划, 是通过一个分化模型。 可预测性- 精度- 预变异预测是一个由解析模块和解码神经网络组成的完善的模块。 前者的目的是分析像素的关联性和预测像素强度, 而后一种在可逆的调试调机制中, 我们的重现神经网络的焦点是纳入解析模型。 本项研究的目标, 将我们所设计的预估的精度- 直度网络的精确性变变变变的变度, 以我们所测的预变的变的变变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变