This work proposes to learn fair low-rank tensor decompositions by regularizing the Canonical Polyadic Decomposition factorization with the kernel Hilbert-Schmidt independence criterion (KHSIC). It is shown, theoretically and empirically, that a small KHSIC between a latent factor and the sensitive features guarantees approximate statistical parity. The proposed algorithm surpasses the state-of-the-art algorithm, FATR (Zhu et al., 2018), in controlling the trade-off between fairness and residual fit on synthetic and real data sets.


翻译:这项工作建议,通过将Canonical Polical Policadic 分解因数与Hilbert-Schmidt内部独立标准(KHSIC)的正规化,学习公平、低级的分解,从理论上和从经验上表明,在潜在因素和敏感特征之间的小型KHSIC保障了统计均等的近似值,拟议的算法超过了控制公平与合成和真实数据集的剩余相适应性之间的权衡的先进算法,即FATR(Zhu等人,2018年)。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
162+阅读 · 2020年1月16日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员