Based on the theoretical neuroscience, G. Cotardo and A. Ravagnavi in \cite{CR} introduced a kind of asymmetric binary codes called combinatorial neural codes (CN codes for short), with a "matched metric" $\delta_{r}$ called asymmetric discrepancy, instead of the Hamming distance $d_{H}$ for usual error-correcting codes. They also presented the Hamming, Singleton and Plotkin bounds for CN codes with respect to $\delta_{r}$ and asked how to construct the CN codes $\cC$ with large size $|\cC|$ and $\delta_{r}(\cC).$ In this paper we firstly show that a binary code $\cC$ reaches one of the above bounds for $\delta_{r}(\cC)$ if and only if $\cC$ reaches the corresponding bounds for $d_H$ and $r$ is sufficiently closed to 1. This means that all optimal CN codes come from the usual optimal codes. %(perfect codes, MDS codes or the codes meet the usual Plotkin bound). Secondly we present several constructions of CN codes with nice and flexible parameters $(n,K, \delta_r(\cC))$ by using bent functions.
翻译:根据理论神经科学,G.Cotardo和A.Ravagnavi在\cite{CR}中引入了一种称为组合神经编码的不对称二进制代码,称为组合神经编码(CN 代码简称),“配制” $\delta ⁇ r} 美元称为不对称差异,而不是用于通常的错误纠正代码的Hamming距离$d ⁇ H}。他们还介绍了与$delta ⁇ r}有关的氯化萘编码的哈明、单顿和普罗特金界限。他们询问了如何用大号的价为$c$C$和$delta ⁇ r}(\c)。 在本文件中,我们首先显示,一个二进制代码$c$C$达到上述界限之一,只要美元达到$d_H$和$r$的相应界限,这表示所有最佳的氯化萘编码都来自常用的最佳代码。 (perfectrectr) 使用普通的 $C, MDRS 或硬性代码,使用一些常规的硬性代码。