This paper introduces the sparse functional boxplot and the intensity sparse functional boxplot as practical exploratory tools that make visualization possible for both complete and sparse functional data. These visualization tools can be used either in the univariate or multivariate functional setting. The sparse functional boxplot, which is based on the functional boxplot, depicts sparseness characteristics in the envelope of the 50\% central region, the median curve, and the outliers. The proportion of missingness at each time index within the central region is colored in gray. The intensity sparse functional boxplot displays the relative intensity of sparse points in the central region, revealing where data are more or less sparse. The two-stage functional boxplot, a derivation from the functional boxplot to better detect outliers, is also extended to its sparse form. Several depth proposals for sparse multivariate functional data are evaluated and outlier detection is tested in simulations under various data settings and sparseness scenarios. The practical applications of the sparse functional boxplot and intensity sparse functional boxplot are illustrated with two public health datasets.
翻译:本文介绍稀少的功能框和密度稀散的功能框,作为实用的探索工具,使完整和稀散的功能数据可以可视化。这些可视化工具可以在单词框或多变量功能环境中使用。以功能框点为基础的稀散功能框点,描绘了50 ⁇ 中央区域信封中的稀疏特性、中值曲线和外端。中央区域中每个时间指数的缺失比例以灰色为颜色。密度稀疏功能框点显示中部区域中稀散点的相对强度,显示数据多或少的地方。两阶段功能框点,即功能框点的衍生,以更好地探测外端,也扩展至其稀薄形式。对稀散多变量功能数据的若干深度建议进行了评估,并在各种数据设置和稀少情景下的模拟中测试了外部检测。稀疏散功能框点和密集稀散功能框点的实际应用用两个公共卫生数据集进行了演示。