Current non-invasive neuroimaging techniques trade off between spatial resolution and temporal resolution. While magnetoencephalography (MEG) can capture rapid neural dynamics and functional magnetic resonance imaging (fMRI) can spatially localize brain activity, a unified picture that preserves both high resolutions remains an unsolved challenge with existing source localization or MEG-fMRI fusion methods, especially for single-trial naturalistic data. We collected whole-head MEG when subjects listened passively to more than seven hours of narrative stories, using the same stimuli in an open fMRI dataset (LeBel et al., 2023). We developed a transformer-based encoding model that combines the MEG and fMRI from these two naturalistic speech comprehension experiments to estimate latent cortical source responses with high spatiotemporal resolution. Our model is trained to predict MEG and fMRI from multiple subjects simultaneously, with a latent layer that represents our estimates of reconstructed cortical sources. Our model predicts MEG better than the common standard of single-modality encoding models, and it also yields source estimates with higher spatial and temporal fidelity than classic minimum-norm solutions in simulation experiments. We validated the estimated latent sources by showing its strong generalizability across unseen subjects and modalities. Estimated activity in our source space predict electrocorticography (ECoG) better than an ECoG-trained encoding model in an entirely new dataset. By integrating the power of large naturalistic experiments, MEG, fMRI, and encoding models, we propose a practical route towards millisecond-and-millimeter brain mapping.


翻译:当前非侵入式神经影像技术在空间分辨率与时间分辨率之间存在权衡。虽然脑磁图(MEG)能够捕捉快速的神经动态,功能磁共振成像(fMRI)可实现脑活动的空间定位,但现有源定位或MEG-fMRI融合方法(尤其是针对单试次自然主义数据)仍难以获得同时保持高分辨率的统一表征。我们采集了被试被动聆听超过七小时叙事故事时的全头MEG数据,所用刺激材料与开放fMRI数据集(LeBel等人,2023)相同。基于这两项自然主义语音理解实验的MEG与fMRI数据,我们开发了基于Transformer的编码模型,用于估计具有高时空分辨率的潜在皮层源响应。该模型通过同时训练多被试的MEG与fMRI数据,其潜在层代表重建皮层源的估计结果。模型在MEG预测性能上优于单模态编码模型的通用标准,仿真实验表明其源估计结果相比经典最小范数解具有更高的时空保真度。我们通过展示模型在未见被试与模态间的强泛化能力验证了潜在源估计的有效性。在全新数据集中,我们源空间的估计活动对皮层脑电图(ECoG)的预测性能优于ECoG训练的编码模型。通过整合大规模自然主义实验、MEG、fMRI与编码模型的优势,我们为实现毫秒-毫米级脑图谱绘制提出了一条可行路径。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员