Discovering new materials is a long-standing challenging task that is crucial to the progress of human society. Conventional approaches based on trial-and-error experiments and computational simulations are labor-intensive or costly with success heavily depending on experts' heuristic knowledge. Recently, deep generative models have been proposed for generative design of materials by learning implicit knowledge from known materials datasets. However, these models are either applicable to a specific material system or the performance is low due to their failure to incorporate physical rules into their model training process. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient generative materials design with high structural diversity (up to 20 different space groups). The high performance of our model manifests its capability to capture and exploit the symmetric constraints of crystals and the pairwise atomic distance constraints among neighbor atoms. Using data augmentation and spatial atom clustering and merging, our PGCGM model increases the overall generation validity performance by more than 700\% compared to FTCP, one of the state-of-the-art structure generators and by more than 45\% compared to our previous CubicGAN model. The newly generated crystal materials also show higher quality in terms of atomic spatial distribution and composition diversity. We further validated the new crystal structures by Density Functional Theory (DFT) calculations. 1,869 materials out of 2,000 were successfully optimized, of which 39.6\% have negative formation energy and 5.3\% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential synthesizability. The 1,869 crystal structures have been deposited to the Carolina Materials Database \url{www.carolinamatdb.org}.


翻译:发现新材料是一项长期的艰巨任务,对人类社会进步至关重要。基于试验和机变实验和计算模拟的常规方法是劳动密集型或成本高昂的,其成功与否在很大程度上取决于专家的厌食知识。最近,通过从已知材料数据集学习隐含知识,为材料的基因化设计提出了深基因模型。然而,这些模型要么适用于特定的材料系统,要么由于未能将物理规则纳入模型培训过程,性能较低。在这里,我们提议了一个基于深层次的基于数据库的物理引导晶体生成模型(PGCGM),用于结构多样性高的高效基因化材料设计(高达20个不同的空间组 ) 。我们模型的高性能显示了其捕捉和利用晶体和近邻原子间对称原子距离限制的对称性限制的能力。使用数据增强和空间原子组合和合并,我们的PGCGGM模型将整个生成的有效性提高了700%以上。 与TCP相比,一个基于状态的晶质结构发电机和超过45°T, 也显示了我们之前的Slibalal-DFA结构的能量结构。我们通过以前的CUBIG-deal-deal-de-deal-de-de-deal-de-de-de-deal sal maild-deal smal destalal exmalviolal destaldalal ex ex ex ex ex ex ex ex ex ex ex ex exmational ex ex exmmmlational exmal exal exmationalviolviolviolviolvicuildal ex ex exal ex exmum ex exal exual ex exald exal exal ex exal exal exal exal exal exal ex ex exal exal exal exal exaldaldaldaldaldal ex ex ex exal exal exal exal exmal exmal ex ex exal exal exmal exal exal exmal ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
14+阅读 · 2019年9月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员