In recent years, many design automation methods have been developed to routinely create approximate implementations of circuits and programs that show excellent trade-offs between the quality of output and required resources. This paper deals with evolutionary approximation as one of the popular approximation methods. The paper provides the first survey of evolutionary algorithm (EA)-based approaches applied in the context of approximate computing. The survey reveals that EAs are primarily applied as multi-objective optimizers. We propose to divide these approaches into two main classes: (i) parameter optimization in which the EA optimizes a vector of system parameters, and (ii) synthesis and optimization in which EA is responsible for determining the architecture and parameters of the resulting system. The evolutionary approximation has been applied at all levels of design abstraction and in many different applications. The neural architecture search enabling the automated hardware-aware design of approximate deep neural networks was identified as a newly emerging topic in this area.


翻译:近些年来,开发了许多设计自动化方法,以便经常地建立电路和程序的近似实施,显示产出质量和所需资源之间的极佳平衡。本文件将进化近似作为流行近似方法之一处理。本文件对在近似计算方面采用的进化算法(EA)方法进行了第一次调查。调查显示,EA主要作为多目标优化器使用。我们提议将这些方法分为两大类:(一) 参数优化,使EA优化一个系统参数矢量,以及(二) 合成和优化,由EA负责确定由此形成的系统的架构和参数。进化近近似已应用于设计的各个阶段和许多不同的应用中。神经结构搜索,使近似深神经网络的自动硬件认知设计成为这一领域新出现的一个专题。

0
下载
关闭预览

相关内容

面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年10月9日
Arxiv
24+阅读 · 2021年1月25日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Top
微信扫码咨询专知VIP会员