The paper presents four models submitted to Part 2 of the SIGMORPHON 2021 Shared Task 0, which aims at replicating human judgements on the inflection of nonce lexemes. Our goal is to explore the usefulness of combining pre-compiled analogical patterns with an encoder-decoder architecture. Two models are designed using such patterns either in the input or the output of the network. Two extra models controlled for the role of raw similarity of nonce inflected forms to existing inflected forms in the same paradigm cell, and the role of the type frequency of analogical patterns. Our strategy is entirely endogenous in the sense that the models appealing solely to the data provided by the SIGMORPHON organisers, without using external resources. Our model 2 ranks second among all submitted systems, suggesting that the inclusion of analogical patterns in the network architecture is useful in mimicking speakers' predictions.
翻译:本文介绍了提交给SIGMORPHON 2021年SIGMORPHON 共同任务0第二部分的四种模式,该任务旨在复制人类对非单词词法的反射判断,我们的目标是探讨将预合成模拟模式与编码器解码器结构相结合的效用。两种模式在网络输入或输出中都使用这种模式设计。两种额外的模式受控制,其作用与同一样板单元中现有隐形形式原始相似,其作用与模拟模式类型频率相同。我们的战略是完全内在的,即这些模式只吸引SIGMORPHON组织者提供的数据,而不使用外部资源。我们的模式2排在所有提交的系统中排名第二,表明将模拟模式纳入网络结构有助于模拟演讲者的预测。