Differentiable neural computers extend artificial neural networks with an explicit memory without interference, thus enabling the model to perform classic computation tasks such as graph traversal. However, such models are difficult to train, requiring long training times and large datasets. In this work, we achieve some of the computational capabilities of differentiable neural computers with a model that can be trained very efficiently, namely an echo state network with an explicit memory without interference. This extension enables echo state networks to recognize all regular languages, including those that contractive echo state networks provably can not recognize. Further, we demonstrate experimentally that our model performs comparably to its fully-trained deep version on several typical benchmark tasks for differentiable neural computers.


翻译:不同的神经计算机可以不受干扰地扩展具有明确内存的人工神经网络,从而使该模型能够执行典型的计算任务,如图形穿梭等。然而,这些模型很难培训,需要很长的培训时间和庞大的数据集。在这项工作中,我们实现了不同神经计算机的一些计算能力,其模型可以非常高效地培训,即一个具有明确内存且没有干扰的回声状态网络。这一扩展使回声状态网络能够承认所有常规语言,包括收缩回声状态网络无法识别的语言。 此外,我们实验性地证明,我们的模型在不同的神经计算机的多项典型基准任务上,与经过充分训练的深层版本相比,具有可比性。

0
下载
关闭预览

相关内容

神经计算(Neural Computation)期刊传播在理论、建模、计算方面的重要的多学科的研究,在神经科学统计和建设神经启发信息处理系统。这个领域吸引了心理学家、物理学家、计算机科学家、神经科学家和人工智能研究人员,他们致力于研究感知、情感、认知和行为背后的神经系统,以及具有类似能力的人工神经系统。由BRAIN Initiative开发的强大的新实验技术将产生大量复杂的数据集,严谨的统计分析和理论洞察力对于理解这些数据的含义至关重要。及时的、简短的交流、完整的研究文章以及对该领域进展的评论,涵盖了神经计算的所有方面。 官网地址:http://dblp.uni-trier.de/db/journals/neco/
专知会员服务
39+阅读 · 2020年9月6日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月15日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
3+阅读 · 2018年6月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员